Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Control Release ; 357: 84-93, 2023 05.
Article in English | MEDLINE | ID: covidwho-2287241

ABSTRACT

Cyclic dinucleotides (CDNs), as one type of Stimulator of Interferon Genes (STING) pathway agonist, have shown promising results for eliciting immune responses against cancer and viral infection. However, the suboptimal drug-like properties of conventional CDNs, including their short in vivo half-life and poor cellular permeability, compromise their therapeutic efficacy. In this study, we have developed a manganese-silica nanoplatform (MnOx@HMSN) that enhances the adjuvant effects of CDN by achieving synergy with Mn2+ for vaccination against cancer and SARS-CoV-2. MnOx@HMSN with large mesopores were efficiently co-loaded with CDN and peptide/protein antigens. MnOx@HMSN(CDA) amplified the activation of the STING pathway and enhanced the production of type-I interferons and other proinflammatory cytokines from dendritic cells. MnOx@HMSN(CDA) carrying cancer neoantigens elicited robust antitumor T-cell immunity with therapeutic efficacy in two different murine tumor models. Furthermore, MnOx@HMSN(CDA) loaded with SARS-CoV-2 antigen achieved strong and durable (up to one year) humoral immune responses with neutralizing capability. These results demonstrate that MnOx@HMSN(CDA) is a versatile nanoplatform for vaccine applications.


Subject(s)
COVID-19 , Hereditary Sensory and Motor Neuropathy , Nanoparticles , Vaccines , Humans , Animals , Mice , Manganese , Silicon Dioxide , COVID-19/prevention & control , SARS-CoV-2 , Immunotherapy
2.
Cell Rep Med ; 3(10): 100774, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2050073

ABSTRACT

"Pan-coronavirus" antivirals targeting conserved viral components can be designed. Here, we show that the rationally engineered H84T-banana lectin (H84T-BanLec), which specifically recognizes high mannose found on viral proteins but seldom on healthy human cells, potently inhibits Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (including Omicron), and other human-pathogenic coronaviruses at nanomolar concentrations. H84T-BanLec protects against MERS-CoV and SARS-CoV-2 infection in vivo. Importantly, intranasally and intraperitoneally administered H84T-BanLec are comparably effective. Mechanistic assays show that H84T-BanLec targets virus entry. High-speed atomic force microscopy depicts real-time multimolecular associations of H84T-BanLec dimers with the SARS-CoV-2 spike trimer. Single-molecule force spectroscopy demonstrates binding of H84T-BanLec to multiple SARS-CoV-2 spike mannose sites with high affinity and that H84T-BanLec competes with SARS-CoV-2 spike for binding to cellular ACE2. Modeling experiments identify distinct high-mannose glycans in spike recognized by H84T-BanLec. The multiple H84T-BanLec binding sites on spike likely account for the drug compound's broad-spectrum antiviral activity and the lack of resistant mutants.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Lectins/pharmacology , Mannose/pharmacology , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/pharmacology , Antiviral Agents/pharmacology
3.
Neurol Neuroimmunol Neuroinflamm ; 9(6)2022 11.
Article in English | MEDLINE | ID: covidwho-2009667

ABSTRACT

BACKGROUND AND OBJECTIVES: In a phase 1 amyotrophic lateral sclerosis (ALS) study, autologous infusions of expanded regulatory T-lymphocytes (Tregs) combined with subcutaneous interleukin (IL)-2 were safe and well tolerated. Treg suppressive function increased and disease progression stabilized during the study. The present study was conducted to confirm the reliability of these results. METHODS: Participants with ALS underwent leukapheresis, and their Tregs were isolated and expanded in a current Good Manufacturing Practice facility. Seven participants were randomly assigned in a 1:1 ratio to receive Treg infusions (1 × 106 cells/kg) IV every 4 weeks and IL-2 (2 × 105 IU/m2) injections 3 times/wk or matching placebo in a 24-week randomized controlled trial (RCT). Six participants proceeded into a 24-week dose-escalation open-label extension (OLE). Two additional participants entered directly into the OLE. The OLE included dose escalation of Treg infusions to 2 × 106 cells/kg and 3 × 106 cells/kg at 4-week intervals. RESULTS: The Treg/IL-2 treatments were safe and well tolerated, and Treg suppressive function was higher in the active group of the RCT. A meaningful evaluation of progression rates in the RCT between the placebo and active groups was not possible due to the limited number of enrolled participants aggravated by the COVID-19 pandemic. In the 24-week OLE, the Treg/IL-2 treatments were also safe and well tolerated in 8 participants who completed the escalating doses. Treg suppressive function and numbers were increased compared with baseline. Six of 8 participants changed by an average of -2.7 points per the ALS Functional Rating Scale-Revised, whereas the other 2 changed by an average of -10.5 points. Elevated levels of 2 markers of peripheral inflammation (IL-17C and IL-17F) and 2 markers of oxidative stress (oxidized low-density lipoprotein receptor 1 and oxidized LDL) were present in the 2 rapidly progressing participants but not in the slower progressing group. DISCUSSION: Treg/IL-2 treatments were safe and well tolerated in the RCT and OLE with higher Treg suppressive function. During the OLE, 6 of 8 participants showed slow to no progression. The 2 of 8 rapid progressors had elevated markers of oxidative stress and inflammation, which may help delineate responsiveness to therapy. Whether Treg/IL-2 treatments can slow disease progression requires a larger clinical study (ClinicalTrials.gov number, NCT04055623). CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that Treg infusions and IL-2 injections are safe and effective for patients with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , COVID-19 Drug Treatment , Amyotrophic Lateral Sclerosis/drug therapy , Biomarkers , Disease Progression , Humans , Inflammation , Interleukin-2/adverse effects , T-Lymphocytes, Regulatory
4.
Sci Immunol ; 7(73): eabl9464, 2022 07 22.
Article in English | MEDLINE | ID: covidwho-1949935

ABSTRACT

CD4+ T cells are central to long-term immunity against viruses through the functions of T helper 1 (TH1) and T follicular helper (TFH) cell subsets. To better understand the role of these subsets in coronavirus disease 2019 (COVID-19) immunity, we conducted a longitudinal study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific CD4+ T cell and antibody responses in convalescent individuals who seroconverted during the first wave of the pandemic in Boston, MA, USA, across a range of COVID-19 disease severities. Analyses of spike (S) and nucleocapsid (N) epitope-specific CD4+ T cells using peptide and major histocompatibility complex class II (pMHCII) tetramers demonstrated expanded populations of T cells recognizing the different SARS-CoV-2 epitopes in most individuals compared with prepandemic controls. Individuals who experienced a milder disease course not requiring hospitalization had a greater percentage of circulating TFH (cTFH) and TH1 cells among SARS-CoV-2-specific cells. Analysis of SARS-CoV-2-specific CD4+ T cells responses in a subset of individuals with sustained anti-S antibody responses after viral clearance also revealed an increased proportion of memory cTFH cells. Our findings indicate that efficient early disease control also predicts favorable long-term adaptive immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes , Epitopes , Humans , Longitudinal Studies , Memory T Cells , Severity of Illness Index
5.
Sci Rep ; 11(1): 20738, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1475484

ABSTRACT

Monoclonal antibodies that target SARS-CoV-2 with high affinity are valuable for a wide range of biomedical applications involving novel coronavirus disease (COVID-19) diagnosis, treatment, and prophylactic intervention. Strategies for the rapid and reliable isolation of these antibodies, especially potent neutralizing antibodies, are critical toward improved COVID-19 response and informed future response to emergent infectious diseases. In this study, single B cell screening was used to interrogate antibody repertoires of immunized mice and isolate antigen-specific IgG1+ memory B cells. Using these methods, high-affinity, potent neutralizing antibodies were identified that target the receptor-binding domain of SARS-CoV-2. Further engineering of the identified molecules to increase valency resulted in enhanced neutralizing activity. Mechanistic investigation revealed that these antibodies compete with ACE2 for binding to the receptor-binding domain of SARS-CoV-2. These antibodies may warrant further development for urgent COVID-19 applications. Overall, these results highlight the potential of single B cell screening for the rapid and reliable identification of high-affinity, potent neutralizing antibodies for infectious disease applications.


Subject(s)
Antibodies, Neutralizing/chemistry , B-Lymphocytes/virology , COVID-19/blood , COVID-19/immunology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Binding Sites/immunology , Biological Products , Female , HEK293 Cells , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Immunologic Memory , Mice , Mice, Inbred BALB C , Protein Binding , Spike Glycoprotein, Coronavirus , Vaccines
6.
J Control Release ; 330: 529-539, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-988295

ABSTRACT

The current health crisis of corona virus disease 2019 (COVID-19) highlights the urgent need for vaccine systems that can generate potent and protective immune responses. Protein vaccines are safe, but conventional approaches for protein-based vaccines often fail to elicit potent and long-lasting immune responses. Nanoparticle vaccines designed to co-deliver protein antigens and adjuvants can promote their delivery to antigen-presenting cells and improve immunogenicity. However, it remains challenging to develop vaccine nanoparticles that can preserve and present conformational epitopes of protein antigens for induction of neutralizing antibody responses. Here, we have designed a new lipid-based nanoparticle vaccine platform (NVP) that presents viral proteins (HIV-1 and SARS-CoV-2 antigens) in a conformational manner for induction of antigen-specific antibody responses. We show that NVP was readily taken up by dendritic cells (DCs) and promoted DC maturation and antigen presentation. NVP loaded with BG505.SOSIP.664 (SOSIP) or SARS-CoV-2 receptor-binding domain (RBD) was readily recognized by neutralizing antibodies, indicating the conformational display of antigens on the surfaces of NVP. Rabbits immunized with SOSIP-NVP elicited strong neutralizing antibody responses against HIV-1. Furthermore, mice immunized with RBD-NVP induced robust and long-lasting antibody responses against RBD from SARS-CoV-2. These results suggest that NVP is a promising platform technology for vaccination against infectious pathogens.


Subject(s)
AIDS Vaccines/chemistry , COVID-19 Vaccines/chemistry , Immunity, Humoral/drug effects , Lipids/chemistry , Nanoparticles , Viral Vaccines/chemistry , AIDS Vaccines/administration & dosage , Adjuvants, Immunologic , Animals , Antigen Presentation , Antigen-Antibody Reactions , COVID-19 Vaccines/administration & dosage , Dendritic Cells/immunology , Dendritic Cells/metabolism , HIV-1 , Humans , Lymph Nodes/immunology , Mice , Mice, Inbred BALB C , Rabbits , SARS-CoV-2 , Viral Vaccines/administration & dosage
7.
Adv Drug Deliv Rev ; 169: 137-151, 2021 02.
Article in English | MEDLINE | ID: covidwho-986888

ABSTRACT

The novel corona virus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the globe at a formidable speed, causing tens of millions of cases and more than one million deaths in less than a year of its report in December 2019. Since then, companies and research institutions have raced to develop SARS-CoV-2 vaccines, ranging from conventional viral and protein-based vaccines to those that are more cutting edge, including DNA- and mRNA-based vaccines. Each vaccine exhibits a different potency and duration of efficacy, as determined by the antigen design, adjuvant molecules, vaccine delivery platforms, and immunization method. In this review, we will introduce a few of the leading non-viral vaccines that are under clinical stage development and discuss delivery strategies to improve vaccine efficacy, duration of protection, safety, and mass vaccination.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Drug Delivery Systems/methods , Vaccines, Synthetic/administration & dosage , Animals , COVID-19/genetics , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , Humans , Vaccines, DNA/administration & dosage , Vaccines, DNA/chemistry , Vaccines, DNA/genetics , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/genetics
8.
ACS Nano ; 14(10): 12370-12389, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-811625

ABSTRACT

Despite the vital role of vaccines in fighting viral pathogens, effective vaccines are still unavailable for many infectious diseases. The importance of vaccines cannot be overstated during the outbreak of a pandemic, such as the coronavirus disease 2019 (COVID-19) pandemic. The understanding of genomics, structural biology, and innate/adaptive immunity have expanded the toolkits available for current vaccine development. However, sudden outbreaks and the requirement of population-level immunization still pose great challenges in today's vaccine designs. Well-established vaccine development protocols from previous experiences are in place to guide the pipelines of vaccine development for emerging viral diseases. Nevertheless, vaccine development may follow different paradigms during a pandemic. For example, multiple vaccine candidates must be pushed into clinical trials simultaneously, and manufacturing capability must be scaled up in early stages. Factors from essential features of safety, efficacy, manufacturing, and distributions to administration approaches are taken into consideration based on advances in materials science and engineering technologies. In this review, we present recent advances in vaccine development by focusing on vaccine discovery, formulation, and delivery devices enabled by alternative administration approaches. We hope to shed light on developing better solutions for faster and better vaccine development strategies through the use of biomaterials, biomolecular engineering, nanotechnology, and microfabrication techniques.


Subject(s)
Viral Vaccines/immunology , COVID-19 Vaccines , Clinical Trials as Topic , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Humans , Immunogenicity, Vaccine , Vaccine Potency , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/adverse effects , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL